Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 46: 30-37, jul. 2020. tab, graf
Article in English | LILACS | ID: biblio-1223233

ABSTRACT

BACKGROUND: The effects of dietary nutrition on tail fat deposition and the correlation between production performance and the Hh signaling pathway and OXCT1 were investigated in fat-tailed sheep. Tan sheep were fed different nutritional diets and the variances in tail length, width, thickness and tail weight as well as the mRNA expression of fat-related genes (C/EBPα, FAS, LPL, and HSL) were determined in the tail fat of sheep at three different growth stages based on their body weight. Furthermore, the correlations between tail phenotypes and the Hedgehog (Hh) signaling pathway components (IHH, PTCH1, SMO, and GLI1) and OXCT1 were investigated. RESULTS: C/EBPα, FAS, LPL, and HSL were expressed with differences in tail fat of sheep fed different nutritional diets at three different growth stages. The results of the two-way ANOVA showed the significant effect of nutrition, stage, and interaction on gene expression, except the between C/EBPα and growth stage. C/EBPα, FAS, and LPL were considerably correlated with the tail phenotypes. Furthermore, the results of the correlation analysis demonstrated a close relationship between the tail phenotypes and Hh signaling pathway and OXCT1. CONCLUSIONS: The present study demonstrated the gene-level role of dietary nutrition in promoting tail fat deposition and related tail fat-related genes. It provides a molecular basis by which nutritional balance and tail fat formation can be investigated and additional genes can be identified. The findings of the present study may help improve the production efficiency of fat-tailed sheep and identify crucial genes associated with tail fat deposition.


Subject(s)
Animals , Tail/metabolism , Sheep/genetics , Adipose Tissue , Diet , Phenotype , RNA, Messenger , Coenzyme A-Transferases , Gene Expression , Body Fat Distribution , Adipogenesis , Lipogenesis/genetics , Hedgehog Proteins/genetics , Real-Time Polymerase Chain Reaction
2.
Yonsei Medical Journal ; : 308-311, 2019.
Article in English | WPRIM | ID: wpr-742530

ABSTRACT

Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency is a rare inborn error of ketone body utilization, characterized by episodic or permanent ketosis. SCOT deficiency is caused by mutations in the OXCT1 gene, which is mapped to 5p13 and consists of 17 exons. A 12-month-old girl presented with severe ketoacidosis and was treated with continuous renal replacement therapy. She had two previously unrecognized mild-form episodes of ketoacidosis followed by febrile illness. While high levels of ketone bodies were found in her blood and urine, other laboratory investigations, including serum glucose, were unremarkable. We identified novel compound heterozygous mutations in OXCT1:c.1118T>G (p.Ile373Ser) and a large deletion ranging from exon 8 to 16 through targeted exome sequencing and microarray analysis. This is the first Korean case of SCOT deficiency caused by novel mutations in OXCT1, resulting in life-threatening ketoacidosis. In patients with unexplained episodic ketosis, or high anion gap metabolic acidosis in infancy, an inherited disorder in ketone body metabolism should be suspected.


Subject(s)
Female , Humans , Infant , Acid-Base Equilibrium , Acidosis , Blood Glucose , Exome , Exons , Ketone Bodies , Ketosis , Metabolism , Microarray Analysis , Renal Replacement Therapy , Transferases
3.
The Korean Journal of Physiology and Pharmacology ; : 37-45, 2019.
Article in English | WPRIM | ID: wpr-728027

ABSTRACT

To study the effect of nicorandil pretreatment on ketone body metabolism and Acetyl-CoA acetyltransferase (ACAT1) activity in hypoxia/reoxygenation (H/R)-induced cardiomyocytes. In our study, we applied H9c2 cardiomyocytes cell line to evaluate the cardioprotective effects of nicorandil. We detected mitochondrial viability, cellular apoptosis, reactive oxygen species (ROS) production and calcium overloading in H9c2 cells that exposed to H/R-induced cytotoxicity. Then we evaluated whether nicorandil possibly regulated ketone body, mainly β-hydroxybutyrate (BHB) and acetoacetate (ACAC), metabolism by regulating ACAT1 and Succinyl-CoA:3-keto-acid coenzyme A transferase 1 (OXCT1) protein and gene expressions. Nicorandil protected H9c2 cardiomyocytes against H/R-induced cytotoxicity dose-dependently by mitochondria-mediated anti-apoptosis pathway. Nicorandil significantly decreased cellular apoptotic rate and enhanced the ratio of Bcl-2/Bax expressions. Further, nicorandil decreased the production of ROS and alleviated calcium overloading in H/R-induced H9c2 cells. In crucial, nicorandil upregulated ACAT1 and OXCT1 protein expressions and either of their gene expressions, contributing to increased production of cellular BHB and ACAC. Nicorandil alleviated cardiomyocytes H/R-induced cytotoxicity through upregulating ACAT1/OXCT1 activity and ketone body metabolism, which might be a potential mechanism for emerging study of nicorandil and other K(ATP) channel openers.


Subject(s)
Acetyl-CoA C-Acetyltransferase , Apoptosis , Calcium , Cell Line , Coenzyme A , Gene Expression , Metabolism , Myocytes, Cardiac , Nicorandil , Reactive Oxygen Species , Transferases
SELECTION OF CITATIONS
SEARCH DETAIL